

Modeling Annotator Accuracies for Supervised Learning

Abhimanu Kumar Department of Computer Science University of Texas at Austin abhimanu@cs.utexas.edu <u>http://abhimanukumar.com</u> Matthew Lease School of Information University of Texas at Austin ml@ischool.utexas.edu

Supervised learning from noisy labels

- Labeling is inherently uncertain
 - Even experts disagree and make mistakes
 - Crowd tends to be noisier with higher variance
- Use wisdom of crowds to reduce uncertainty

 Multi-label + aggregation = consensus labels
- How to maximize learning rate (labeling effort)?
 Label a new example?
 - Get another label for an already-labeled example?
- See: Sheng, Provost & Ipeirotis, KDD'08

Task Setup

- <u>Task</u>: Binary classification
- <u>Learner</u>: C4.5 decision tree
- <u>Given</u>
 - An initial seed set of single-labeled examples (64)
 An unlimited pool of unlabeled examples
- <u>Cost model</u>
 - Fixed unit cost for labeling any example
 - Unlabeled examples are freely obtained
- Goal: Maximize learning rate (for labeling effort)

Compare 3 methods: SL, MV, & NB

- Single labeling (SL): label a new example
- Multi-Labeling: get another label for pool
 - Majority Vote (MV): consensus by simple vote
 - Naïve Bayes (NB): weight vote by annotator accuracy

$$\widehat{x} = \operatorname{argmax}_{x} P(X^{j} = x | Y_{1:w}^{j})$$

$$\propto P(Y_{1:w}^{j} | X^{j}) P(X^{j})$$

$$= \prod_{i=1}^{w} P(Y_{i}^{j} | X^{j}) P(X^{j})$$

Assumptions

- Example selection: random
 - From pool for SL, from seed set for multi-labeling
 - No selection based on active learning
- Fixed commitment to a single method *a priori*
 No switching between methods at run-time
- Balanced classes
 - model & measure simple accuracy (not P/R, ROC)
 - Assume uniform class prior for NB
- Annotator accuracies are known to system
 - In practice, must estimate these: from gold data (Snow et al. '08) or EM (Dawid & Skene'79)

Simulation

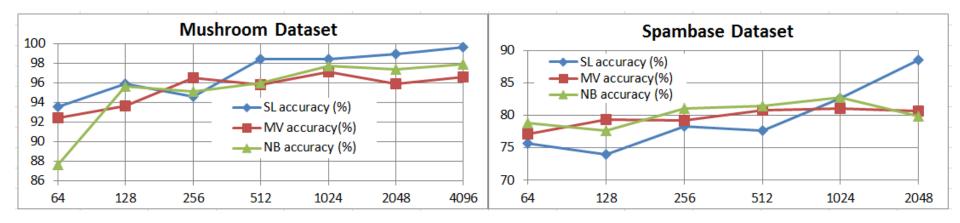
- Each annotator
 - Has parameter *p* (prob. of producing correct label)
 - Generates exactly one label
- Uniform distribution of accuracies U(min,max)
- Generative model for simulation
 - Pick an example x (with true label y^*) at random
 - Draw annotator accuracy p ~ U(min,max)
 - Generate label $y \sim P(y \mid p, y^*)$

Evaluation

- Data: 4 datasets from UCI ML Repository
 - Mushroom
 - Spambase <u>http://archive.ics.uci.edu/ml/datasets.html</u>
 - Tic-Tac-Toe
 - Chess: King-Rook vs. King-Pawn
- Same trends across all 4, so we report first 2
- Random 70 / 30 split of data for seed+pool / test
- Repeat each run 10 times and average results

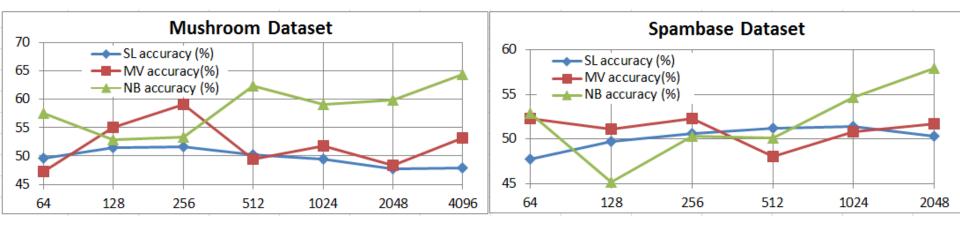
p ~ U(0.6, 1.0)

- Fairly accurate annotators (mean = 0.8)
- Little uncertainty -> little gain from multi-labeling



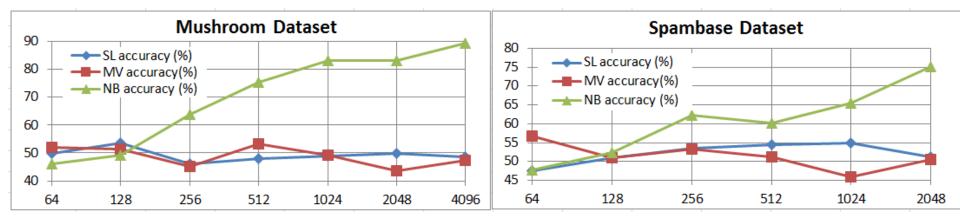
p ~ U(0.4, 0.6)

- Very noisy (mean = 0.5, random coin flip)
- SL and MV learning rates are flat
- NB wins by weighting more accurate workers



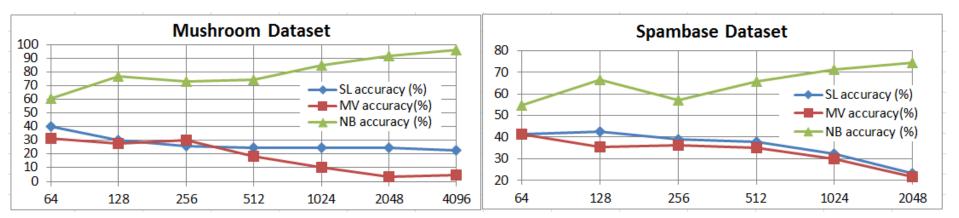
p~U(0.3, 0.7)

- Same noisy mean (0.5), but widen range
- SL and MV stay flat
- NB further outperforms



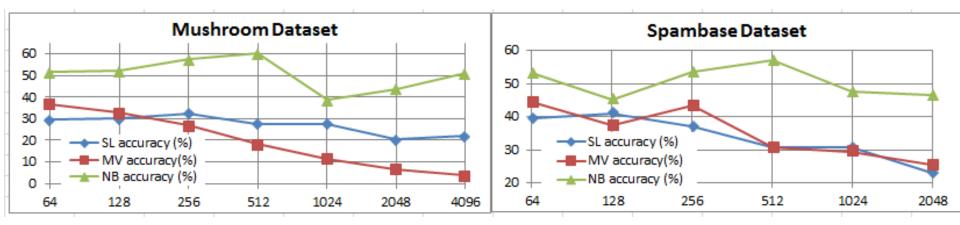
p ~ U(0.1, 0.7)

- Worsen accuracies further (mean = 0.4)
- NB virtually unchanged
- SL and MV predictions become anti-correlated — We should actually flip their predictions...



p ~ U(0.2, 0.6)

- Keep noisy mean 0.4, tighten range
- NB best of the worst, but only 50%
- Again, seems we should be flipping labels...

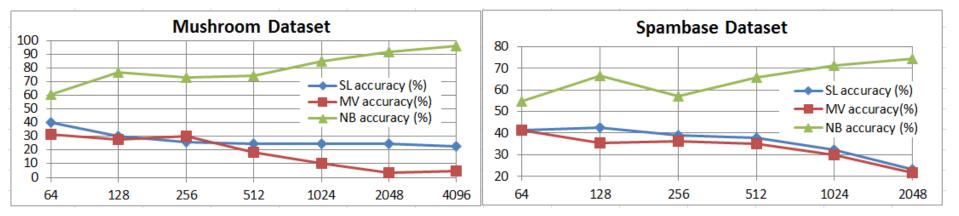


Label flipping

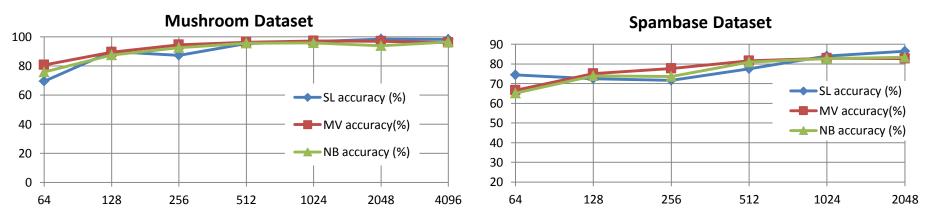
- Is NB doing better due to *how* it uses accuracy, or simply because it's using more information?
- If a worker's average accuracy is below 50%, we know he tends to be wrong (we've ignored this)
 whatever he says, we should guess the opposite
- Flipping: put all methods on even-footing
 - Assume a given p < 0.5 produces label = y</p>
 - Use label = (1-y) instead; for NB, use 1-p accuracy
 - Same as changing distribution so p always > 0.5

 $p \sim U(0.1, 0.7)$

No flipping



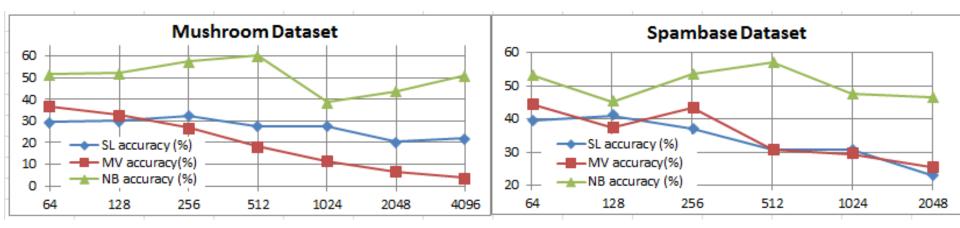
With flipping



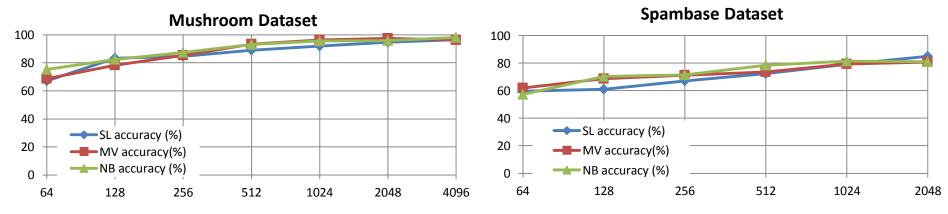
February 9, 2011 Kumar and Lease. Modeling Annotator Accuracies for Supervised Learning. CSDM 2011.

 $p \sim U(0.2, 0.6)$

No flipping



With flipping



Conclusion

- Take-home: modeling accuracies matters, even if single labeling and majority vote
- But what about...
 - When accuracies are estimated (noisy)?
 - With real annotation errors (real distribution)?
 - With different learners or tasks (e.g. ranking)?
 - With dynamic choice of new example or re-label?
 - With active learning example selection?
 - With imbalanced classes?

Recent Events (2010 was big!) http://ir.ischool.utexas.edu/crowd

- Human Computation: <u>HCOMP 2009</u> & <u>HCOMP 2010</u> at KDD
- IR: <u>Crowdsourcing for Search Evaluation</u> at SIGIR 2010
- NLP
 - The People's Web Meets NLP: Collaboratively Constructed Semantic Resources: <u>2009</u> at ACL-IJCNLP & <u>2010</u> at COLING
 - <u>Creating Speech and Language Data With Mechanical Turk</u>. NAACL 2010
 - Maryland Workshop on Crowdsourcing and Translation. June, 2010
- ML: <u>Computational Social Science and Wisdom of Crowds</u>. NIPS 2010
- Advancing Computer Vision with Humans in the Loop at CVPR 2010
- Conference: <u>CrowdConf 2010</u> (organized by CrowdFlower)

Upcoming Crowdsourcing Events <u>http://ir.ischool.utexas.edu/crowd</u>

<u>Special issue of Information Retrieval journal on</u> <u>Crowdsourcing</u> (papers due May 6, 2011)

Upcoming Conferences & Workshops

- <u>CHI 2011 workshop</u> (May 8)
- HCOMP 2011 workshop at AAAI (papers due April 22)
- CrowdConf 2011 (TBA)
- SIGIR 2011 workshop? (in review)
- TREC 2011 Crowdsourcing Track

Thanks!

Special thanks to our diligent crowd annotators and their relentless dedication to science...

