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ABSTRACT
Crowdsourcing [5] methods are quickly changing the land-
scape for the quantity, quality, and type of labeled data
available to supervised learning. While such data can now
be obtained more quickly and cheaply than ever before, the
generated labels also tend to be far noisier due to limita-
tions of current quality control mechanisms and processes.
Given such noisy labels and a supervised learner, an impor-
tant question to consider, therefore, is how labeling effort
can be optimally utilized in order to maximize learner ac-
curacy? For example, should we (a) label additional unla-
beled examples, or (b) generate additional labels for labeled
examples in order to reduce potential label noise [12]? In
comparison to prior work, we show faster learning can be
achieved for case (b) by incorporating knowledge of worker
accuracies into consensus labeling [13]. Evaluation on four
binary classification tasks with simulated annotators shows
the empirical importance of modeling annotator accuracies.
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1. INTRODUCTION
Historically, supervised learning methods often outperformed
their unsupervised counter-parts since providing a learner
with more information can enable it to more quickly and ef-
fectively learn a desired pattern. Recent years saw this trend
reverse, however, due to the massive growth of the Web hav-
ing provided unsupervised methods with free and seemingly
limitless training data [9]. Now the advent of crowdsourcing
(e.g. via Amazon’s Mechanical Turk1), has introduced an-
other potentially disruptive shift: labeled data can suddenly
also be obtained far cheaper, easier, and faster than ever
before. A significant obstacle remains, though: crowdsourc-
ing methodologies tend to suffer from poor quality control.

1https://www.mturk.com
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Consequently, crowdsourced labels are typically quite noisy
and exhibit high variance. An important research question,
then, is how to most efficiently utilize a crowdsourced-based
method for obtaining new labels in order to maximize learn-
ing rate with respect to annotation time and cost?

In this paper, we expand on Sheng et al.’s investigation [12]
of how labeling effort may be best utilized in order to max-
imize learner accuracy. Should we (a) label additional un-
labeled examples, or (b) generate additional labels for la-
beled examples in order to reduce potential label noise?
In comparison to Sheng et al., the key difference of our
work is incorporating knowledge of annotator accuracies into
the model, which has large impact on resultant accuracies
achieved by the learner. In another line of work by Snow et
al. [13], a (slightly less) simple Naive Bayes approach is used
to construct a weighted ensemble for consensus labeling in
which labels are weighted proportionally to the accuracy of
the annotator they come from. Snow et al. assume a fixed
number of labels are obtained per example and do not inves-
tigate learning rates from consensus labeling. We integrate
these two lines of prior work by using knowledge of annota-
tor accuracy to more effectively aggregate labels and thereby
improve the learning rate of our supervised model. Results
on four binary classification tasks using C4.5 [10] show the
empirical effectiveness of our approach, as well as suggesting
potential benefit for other tasks and learning models.

2. RELATED WORK
Recent years have seen significant growth in label aggrega-
tion research. For example, Raykar et al. model label exper-
tise via the EM algorithm to predict underlying labels [11],
building on earlier work by Dawid and Skine [3]. Ipeirotis et
al. differentiate error and bias in labeling mistakes with the
idea that the bias can still be helpful for learning [6]. Dekel
and Shamir give a unique approach to solve noisy label prob-
lem by pruning out experts who produce the most noise [4].
Whitehill et al. follow a different approach in that the labeler
accuracies are not known a priori to them [15]. Yan et al.
provide a predictive algorithm that reduces number of over-
lapping labels required for label prediction by determining
which labels obtained need verification [16].

Alonso et al. use crowd workers to assess relevance [1]. Yang
et al. predict the number of overlapping expert labels needed
when there is substantial disagreement among the experts [17].
Both Alonso et al. and Yang et al. perform aggregation by
simple majority vote. Mason et al. investigate the effect of
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compensation on worker accuracies [8]. Little et al. provide
a comparative evaluation of collaborative and independent
labeling approaches for labeling accuracy and cost [7].

3. TASK
Our task formulation largely mirrors that of Sheng et al. [12]:
training a supervised learner for binary classification. We
are given a large pool of unlabeled examples from which to
draw examples for labeling. Our goal is to maximize classi-
fier accuracy relative to labeling effort (unlike Sheng et al.,
we assume unlabeled examples are freely obtained). We as-
sume each label requires a fixed cost to produce, regardless
of the specific example or the annotator involved (we ignore
issues of varying example difficulty or annotator expertise
with regard to labeling cost). In addition to the pool of un-
labeled examples, we assume a small set of seed examples
already assigned a single label. Seed data provides a mini-
mal training set for the classifier to which additional labeled
examples may be added. All labels are potentially noisy.

We expect classifier accuracy to improve with more accu-
rate and/or plentiful training data, suggesting a tradeoff for
using labeling effort. At each labeling opportunity, should
we (a) label an additional, previously unlabeled example or
(b) generate a new label for a previously labeled example
(“multi-labeling”). While individual labels may be noisy, ef-
fective aggregation of multiple labels can potentially yield
more accurate consensus labels for training. As in Sheng et
al., examples to be labeled are chosen as follows: for (a), uni-
formly at random from the pool of unlabeled examples, and
for (b), using a fixed round-robin schedule which visits each
(previously labeled) example once before repeating. We do
not consider selection of examples to maximally benefit the
learner, to maximally reduce uncertainty of existing labels,
or based on example difficulty or the annotator expertise.
We also assume the system’s choice of (a) or (b) is fixed
a priori ; a more difficult task would require the system to
repeatedly choose between (a) and (b) at run-time.

4. METHODS
We compare performance of several methods which differ in
two dimensions: how labeling effort is utilized ((a) or (b)
above), and for (b), how label aggregation is achieved.

Single Labeling (SL) [12]. Always label a previously un-
labeled example; examples are never multi-labeled.

Multi-Labeling with Majority Voting (MV) [12]. Al-
ways generate an additional label for a previously labeled
example. Labels are aggregated via simple majority vote.

Multi-Labeling with Naive Bayes (NB) [13]. As with
MV, always re-label a previously labeled example. Labels
are aggregated via Naive Bayes. Given labels Y

j
1:w generated

by w workers for example j, NB predicts label Xj = x̂ via:

bx = argmax
x

P (Xj = x|Y j

1:w)

∝ P (Y j
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j)P (Xj)

=
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i |X
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where we assume each annotator’s labels are conditionally
independent. Rather than model the full conditional distri-
bution P (Y |X),we instead model annotator i’s accuracy by
a single accuracy parameter pi = P (Y = X).

5. EVALUATION
Simulation. As in Sheng et al. [12], we assume each label is
generated by a unique annotator with accuracy independent
of the particular example. Given example j with true label
Xj = x, annotator i generates a label Y

j

i = x with prob-
ability pi. Unlike Sheng et al., we assume these accuracies
are known to the system, e.g. established from past work
(this assumption will be further discussed later in the paper).
Annotator accuracies are drawn from a uniform distribution
whose interval is varied to simulate different annotator be-
haviors. As in Sheng et al., we assume each annotator gen-
erates exactly one label. Whenever a new label is needed,
the simulator first samples a new annotator accuracy from
this uniform distribution, then samples a correct or incor-
rect binary label based on this accuracy and the example’s
true label (known to the simulator but not to the system).

Data. We report on four benchmarks also used by Sheng
et al.: Mushroom, Spambase, Tic-Tac-Toe and Chess:King-

Rook vs. King-Pawn2. Since inspection of the datasets re-
vealed minimal class imbalance (empirical proportion of ex-
amples with X = 1 is 48.2%, 39.4%, 65.3%, and 52%, respec-
tively), for the NB method we assume a simplifying uniform
prior for P (X) which can be ignored. Results on the last
two datasets exhibited similar trends as on the first two, so
we omit these latter results due to space constraints.

Learning. We adopt the same C4.5 decision tree classi-
fier [10] implemented by J48 in WEKA3 as used by Sheng
et al. We also follow the same experimental setup of a 70/30
train/test partition, and report results of averaging across
10 trials with different random partitions. We fix the num-
ber the of seed examples at 64, and as in Sheng et al., we
generate labels in pairs to avoid tie breaking for MV. As an
example, assume 64 labels are generated beyond the seed
set. This would yield a total of 128 single-labeled training
examples for SL, while for MV and NB, we would have 32
examples with 3 labels and 32 examples with one label.

Results. Figures 1-5 compare results of SL, MV, and NB
methods across five experimental conditions which vary the
range of annotator accuracies simulated. Results are sum-
marized in each Figure’s caption. Note the x-axis in these
figures denotes the number of additional labels beyond the
seed data (when the methods begin to be applied). While
for multi-labeling methods it would have been interesting to
directly measure consensus label accuracy achieved on train-
ing data, we focus our analysis instead on the effect of these
consensus labels on classifier accuracy. Since datasets used
exhibit minimal class imbalance, we report simple accuracy
rather than measuring precision and recall.

Overall, NB tends to perform as well or better than the other
two methods. When single label accuracies are already high
(Figure 1), multi-labeling has little benefit and we should

2http://archive.ics.uci.edu/ml/datasets.html
3http://www.cs.waikato.ac.nz/ml/weka
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Figure 1: p1:w ∼U(0.6, 1.0). With very accurate annotators, generating multiple labels (to improve consensus
label accuracy) provides little benefit. Instead, labeling effort is better spent single labeling more examples.

Figure 2: p1:w ∼U(0.4,0.6). With very noisy annotators, single labeling yields such poor training data that
there is no benefit from labeling more examples (i.e. a flat learning rate). MV just aggregates this noise to
produce more noise. In contrast, by modeling worker accuracies and weighting their labels appropriately,
NB can improve consensus labeling accuracy (and thereby classifier accuracy).

Figure 3: p1:w ∼U(0.3, 0.7). With greater variance in accuracies vs. Figure 2, NB further improves.

Figure 4: (p1:w ∼U(0.1, 0.7)). When average annotator accuracy is below 50%, SL and MV perform exceedingly
poorly. However, variance in worker accuracies known to NB allows it to concentrate weight on workers with
accuracy over 50% in order to achieve accurate consensus labeling (and thereby classifier accuracy).

Figure 5: p1:w ∼U(0.2, 0.6). When nearly all annotators typically produce bad labels, failing to “flip” labels
from poor annotators dooms all methods to low accuracy.
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simply label more examples. As average annotation becomes
noisier, however, we see both SL and MV having diminish-
ing accuracy while NB continues to be able to effectively
exploit the most accurate annotators to improve classifier
accuracy. Of particular note is the adversarial case of an-
notators achieving below 50% accuracy (average accuracy is
below this in both Figures 4 and 5). In the former case,
NB achieves accuracies above 90% despite this adversarial
average accuracy, whereas the SL and MV schemes analyzed
by Sheng et al. [12] perform very poorly. Even in the latter
case, NB well-outperforms the other methods.

There is an important caveat to these results to mention.
While we have assumed the system has knowledge of an-
notator accuracies, in the experiments above, only NB is
exploiting this information, putting SL and MV methods at
an unfair disadvantage. To remedy this, we tried making a
trivial change to SL and MV methods to always “flip” la-
bels produced by adversarial annotators, and we repeated
all of our experiments. While not shown here, results are
strikingly different: all methods generally perform compa-
rably across conditions (excepting only the case of the most
accurate annotators, in which case SL continues to domi-
nate). As such, the key lesson appears to be the importance
of modeling worker accuracies at all, rather than the spe-
cific method for how these accuracies are used. In practice,
annotator accuracies must be estimated from prior observa-
tions, and so system knowledge of them will be noisy. This
and other assumptions of our setup here will be important
to test with actual crowd annotated data in future work.

6. CONCLUSION
This paper expanded upon Sheng et al.’s investigation [12] of
how labeling effort can be optimally utilized in order to max-
imize learner accuracy, assuming a crowdsourced environ-
ment in which labels obtain may be very noisy and exhibit
high variance. Results with simulated annotators showed
that incorporating knowledge of worker accuracies into the
model can have a very large impact on classifier accuracy,
particularly in adversarial settings. Future work will investi-
gate these issues and findings on real crowd-annotated data.

Other follow-on work includes analysis of crowd data in or-
der to characterize general properties of crowd labor for
modeling, e.g. expected number of workers and distribu-
tion of worker accuracies as a function of task nature and
difficulty, etc. While we assumed all labeling effort was used
either for labeling new examples or for re-labeling, a clear
generalization will be to decide at each labeling opportunity
during run-time which strategy is likely to be most effective.
Similarly, we would like to couple this work with traditional
active learning methods in which we must decide which ex-
ample to label next in order to maximally benefit the learner
or reduce variance of existing labels, etc. Annotators can
be better modeled via: (a) estimating their accuracies from
trap-questions or inter-annotator agreeement, (b) tracking
and updating dynamic worker accuracies which change over
time, and (c) modeling directional errors or biases of anno-
tators rather than modeling accuracy via a single parameter.

“Wisdom of crowds” generally suggests a group of laymen
can outperform a smaller number of experts assuming cer-
tain conditions are met (e.g. independence of judgment be-

tween crowd members) [14]. Similar effects have been ob-
served with automated systems in which combining uncer-
tain predictions from multiple independent learners via en-
semble techniques tends to outperform the best individual
systems [2]. This suggests an an interesting synergy to inves-
tigate between effective ensemble methods for leveraging the
crowd and automated systems in tandem. A related trend
will see hybrid systems increasingly integrate human effort
with automation to“close the loop”and achieve greater func-
tionalities than either can achieve on its own [16].
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